Kamis, 11 Mei 2017

KFold Validation

Cross Validation merupakan salah satu teknik untuk menilai/memvalidasi keakuratan sebuah model yang dibangun berdasarkan dataset tertentu, yang melibatkan proses K-buah partisi secara acak. 

Kelebihan dari metode ini adalah tidak adanya masalah dalam pembagian data. Setiap data akan menjadi test set sebanyak satu kali dan akan menjadi training set sebanyak K-1 kali. Kekurangan dari metode ini adalah algoritma pembelajaran harus dilakukan sebanyak K kali yang berarti menggunakan K kali waktu komputasi. Berikut contoh Kfold sebanyak Kfold-3.


Kemudian dilakukan sejumlah K-kali eksperimen, dimana masing-masing eksperimen menggunakan data partisi ke-K sebagai data testing dan memanfaatkan sisa partisi lainnya sebagai data training.
Arti penting dari Kfold adalah semua dataset akan memiliki peluang yang sama sebagai anggota data training maupun data testing.
Posting Komentar